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Chemical reactions of first order (isolated, reversible or consecutive) are considered as slnlple 
birth and death processes. A random variable, a pseudorandom number in the interval (0;1 J, 
is attributed to the life time of a particle of reacting compound and the course of the reaction 
is simulated by generating these numbers on digital computer. The results illustrate the probability 
character of a chemical reaction in a system with a small number of particles and the difference 
between the stochastic and deterministic descriptions of the reaction course. It is shown how to 
use the simulation method in determining the mean number of particles. 

A chemical reaction can be considered as a sequence of events governed by the laws of probability, 
i.e. as a stochastic process!. The stochastic theory of chemical reactions was worked out in detail 
recently2.3. Most papers deal with the calculation of the mean number of particles at time t and 
with the conditions at which the stochastic description of a reaction approaches the deterministic 
one given by the classical chemical kinetics. The principle of the &tochastic method in chemical 
kinetics is the replacement of the deterministic continuous variable, concentration of particles 
at time t, by the probability that the number of particles of a given kind at time t is n. This number 
is considered as a random variable. Further, the transition probabilities in the system2 

- 4 or the 
probabilities of conversion for one panicles ,6 are postulated. From these postulates the disttibu­
tion of the number of particles of a given kind, the mean value and fluctuation of the number 
of particles at time t can be derived. 

The present communication deals with the stochastic model of first-order reactions 
which are considered as simple birth and death processes!, and with the possibility 
of simulation of an idealized reaction course modelled as a stochastic process. By 
replacing the life time ofa particle of the reacting compound by a new random va­
riable, the problem is reduced to generation of pseudorandom numbers. The" results 
illustrate the difference between the stochastic and classical deterministic description 
of a chemical reaction and make it clear that the irreproducibility of the time course 
of a reaction in a system with a small number of particles can be caused by the pro­
bability character of the process. In the case of an isolated first-order reaction, it is 
shown how the simulation method can be used to find the stochastic mean value 
of the number of particles of a given kind at time t. 
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Isolated First-Order Reaction A ~ B 

We postulate: The probability that an arbitrary particle A will react in the interval 
(t, t + ~t), where ~t ~ 0, to give B is k ~t, where k is independent of time (i.e. the 
formation of the product B is considered as a pure birth process!). The conversion 
proper is instantaneous. This postulate implies: The probability that the particle 
A will not react in the mentioned interval is l-k ~t; the probability that it will not 
react in the finite interval (0, t) (t = 0 denoting the beginning of the reaction) is the 
limit of (1 - k ~t )'Id! for M ~ 0, i.e. e -kt; the probability that the particle A wiJI not 
react in the same interval but will react in the interval <t, t + dt) (i.e. that its life 
time T is in the interval <t, t + dt)) is 

Prob {t ~ T < t + dt} = k e- kt dt . (1) 

The life time T can be hence considered as a continuous random variable with a pro­
bability density k e-kt

• We now introduce a new random variable 

R = 1 - e- kT
• (2) 

Since T E (0,00), it foJIows R E (0, 1). This random variable is according to Eq. (1) 
subject to a uniform distribution with a unit probability density: 

Prob {y ~ R < y + dy} = dy , (3) 

where y = 1 - e- kt is a real number in the interval (0,1). The random variable 
R will be represented by pseudorandom numbers in the interval (0, 1) which are 
assumed to obey the distribution (3) (more precisely, their distribution is close to 
a .quasi-uniform one). Such numbers can be generated on a digital computer7

. 

Every generated number corresponds to a life time of one particle A according to Eq. (2). 
Provided that N A(O) = N denotes the initial number of particles A, the life time of all 
particles A can be obtained by generating N random numbers. If these are ordered 
in an increasing sequence, a stochastic time course of the reaction is obtained; by 
generating N random numbers R the course of the reaction A ~ B is simulated, i.e. 
an idealized experiment is made. 

The system contains just N - 12 particles A and n particles B at time t, if the life 
time of n particles A is shorter than t and that of N - n particles A longer 
than t (i.e. if n generated numbers R; are smaller and N - 11 numbers R; larger 
than y = 1 - e-kt

, i = 1, ... , N). Hence 

Prob {NA(t) = N - n} = Prob {NB(t) = n} = 

= (~) [Prob {R; < y}y [Prob {R; > y}y-n = (~) yn(1 - y)N-n , (4) 
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where Nx(t) denotes the number of particles X = A, B at time t and the expression on 
the right-hand side corresponds to the binomial distribution derived earlier2

•5 for 
a first-order reaction. The result can be interpreted also as follows: if M sets of N 

numbers Ri are generated, then of very large M all numbers Ri will fill up the interval 
(0,1) evenly and their number in the interval (0, y) will approach MNy; their mean 
number in this interval corresponding to one set (one experiment) will be Ny in accord 
with the deterministic value of the number of particles B at time t N(1 - e -kt). The 
most probable value of the n-th random number in the increasing series of N generated 
numbers is (n - l)j(N - 1) approaching njN for N, n -+ 00. The most probable 
time, Tn' in which the n-th particle reacts is given by 

Tn = - k- 1 In (1 - (n - l)j(N - 1)) ~ -k-1ln (1 - n/N). (5) 

The last term corresponds to the deterministic value of the time necessary to attain 
a conversion x = njN. 

Besides the described method of simulation of an isolated reaction of first 
order there is also another one, suitable even for more complicated reactions of 
first order. Again, a pseudorandom number R E (0, 1) corresponds to the life 
time of particle A according to Eq. (2). First, we generate N numbers R\N), i = 

= 1, ... , N, select the smallest, R~~, and attribute to one particle A the life time 
T) = - k- 1 In (1 - R~~). The remaining N - 1 particles A are at the time T) still 

100~--------~--------~----------,-----~--~ 
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FIG. 1 

Time Dependence of Number of Particles A for Reaction A ->- B 
NA(O) = 100. 
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in the state A. We now place the beginning ofthe time scale at the time Tl and follow 
the reaction in the system of N - 1 particles. We generate N - 1 new numbers 
R~N-l), i = 1, .. . , N - 1, select the smallest, R~n-l), and attribute to one of the N - 1 
particles A a relative life time T; = _k- 1 In (1 - R~;I)); the life time of this 
particle in the original (laboratory) time scale is T2 = Tl + T;. Further we proceed 
analogously. The life time of the n-th reacting particle A in the original time scale 
is Tn = ~~ r;. It can be proved that this method of calculation is equivalent to the 
preceding one; here also the probability that the system contains N - n unreacted 
particles A at time t is given by the binomial distribution (4). The results of simulation 
of an isolated reaction of first order by the described method are shown in Fig. 1 
for N = 100. The dashed curve corresponds to the deterministic solution for the 
number of particles A at time t, N A( t) = N e -kt, which is identical with the stochastic 
mean number of particles. For a great initial number of particles A, the statistically 
most probable time course approaches the deterministic curve. 

Reversible First-Order Reaction A ~ B 

We postulate in this case: The probability that an arbitrarily chosen particle A will 
be converted to B in the time interval (t, t + ill), where ilt --t 0, is kl ilt; the proba­
bility that the particle B will be converted to A in the same time interval is kz ilt. 
The conversions are considered as instantaneous events. The numbers of particles A 
and B at time t are denoted as N A(t) and Nn(l). The initial conditions are N A(O) = 

= N, Nn(O) = O. The mentioned reaction was simulated by the described method, 
which was modified. At the beginning of the reaction (t = 0) the system contains 
N A(O) = N particles A. We generate N numbers Rrl, i = 1, ... , N, select the s'mallest 
one, Rr~in and calculate the life time Tl = _1<;1 In (1 - Rr~in) of one paiticle A. 
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FIG. 2 

Time Dependence of Number of Particles A for Reaction A -= B 
NA(O) = 100, Nn(O) = O. 
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We choose a new time scale with the origin at "1 with respect to the original (labora­
tory) time scale. The system now contains N - 1 particles A and one particle B. 
We generate N - 1 numbers R<:'i- 1

), i = 1, . .. , N - 1, and one number R~~L select 
the smallest number Ri~~i~) from the first group and calculate the life time of a par­
ticle A as r; = - k~1 In (1 - Ri~~i~») in the relative time scale. The number R~l,~ 
corresponds to the life time of a particle B, ,,~ = - ki 1 In (1 - R~~~) in the relative 
time scale. If ,,; < ,,~, another particle A will react at time "2 = "1 + ,,;; if ,,; > ,,~, 

the particle B will be converted to A at time "2 = "1 + ,,~ . Generally, when the system 
contains N - n particles A and n particles B, we generate N - n numbers R<:,:n) 

and n numbers R~~L select in both groups the smallest one and calculate the corres­
ponding relative life times, of which the smaller one gives the time in which the 
particle A (for R<J,-:n72 < 1 - (1 - R~~~intl /k2) or B (for Rr:.-:n7~ > 1 - (1 -
- R~~~iny"k2) reacts. On returning to the original time scale, we obtain the course 
of the reaction. The results of this calculation are shown in Fig. 2 for N = 100 and 
k[ = k 2 • The dashed curve shows the deterministic solution and the stochastic mean. 
The fluctuation of the system near to equilibrium is also illustrated. 

Consecutive First-Order Reactions A ~ B ~ C 

We postulate analogously that the probability of conversion of a particle A to B 
in the time interval (t , t + At), where At ~ 0, is k[ At, and the probability of conver-
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FIG . 3 
Time Dependence of Numbers of Particles Band C for Reaction A ->- B -> C 

NA(O) = 100, NB(O) = NcCO) = o. 
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sion of B to C in the same time interval is k2 Llt. The system contains at the beginning 
N particles A and none B or C. The method of simulation of this reaction is analogous 
to the preceding one: When the system contains m particles A and n particles B 
(m + n ~ N), we generate m numbers Ri~l, i = 1, ... , m, and n numbers Rk);, 
i = 1, ... , n, select the smallest one in both groups and calculate the corresponding 
life times of which the smaller one gives the time in which the particle A will be 
converted to B or B to C. On returning to the laboratory time scale, we gradually 
obtain the course of the reaction. Again , it can be shown that this method yields the 
same probability relations as the usual stochastic treatment. The results of simulation 
of the considered reaction for N = 100 and k l = k2 are shown in Fig. 3; the dashed 
curve corresponds to the deterministic solution, which is identical with the stochastic 
mean. 

The described method of simulation of first-order reactions can be used to determine 
the mean number of particles of a given kind at time t. The simulation of the reaction 

FIG . 4 

Block Diagram of Algorithm for Generating Pseudo­
random Numbers 

NA and NB denote arbitrary four-digit positive 
integers, KX positive integer formed by dropping all 
digits after decimal point, R pseudorandom number 
with four significant digits. 

TABLE I 

Results of Testing Generated Pseudorandom Numbers 
NA and NB are arbitrary four-digit positive integers, ( R) mean value of pseudorandom 

number calculated from 10000 generated numbers corresponding to NA and NB, and ( R2 ) the 
corresponding mean square value. 

NA NB ( R) ( R2) 

---••.... - ------

3194 2744 0-4974 0·3296 
6214 5807 0·5015 0·3354 
8537 4069 0·4966 0·3303 
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represents an idealized experiment. If a large number of simulations for a given system 
is carried out (hence a large number of experiments), the number of particles of a given 
kind at time t obtained by averaging over all simulations (experiments) will approach 
with increasing number of simulations the stochastic mean number of particles at 
time t. 

Algorithm for Generating Pseudorandom Numbers 

Pseudorandom numbers in the interval (0,1) with four significant figures were gene­
rated with the aid of an algorithm described by the block diagram in Fig. 4. * Testing 
of 10000 generated numbers gave for various values of N A and N B the results shown 
in Table I. No period was found during generating the numbers. The simulation and 
testing were performed on a Hewlett-Packard 2116 B computer and the program was 
written in Fortran II. .. 
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Translated by K . Micka . 

This algorithm is a modification of the additive congruential pseudorandom number 
generator. 
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